Minimization of the Constant in Inequalities of Jackson-Stechkin Type and the Value of Widths of Functional Classes in L2

Gulzorkhon Amirshoevich Yusupov*

Tajik State Pedagogical University by name S.Aini, Rudaky Avenue 121, 734003 Dushanbe, Tajikistan

*Corresponding Author

Gulzorkhon Amirshoevich Yusupov, Tajik State Pedagogical University by name S.Aini, Rudaky avenue 121, 734003 Dushanbe, Tajikistan, Tel: 935002214, E-mail: G_7777@ mail.ru

Citation

Gulzorkhon Amirshoevich Yusupov (2023) Minimization of the Constant in Inequalities of Jackson-Stechkin Type and the Value of Widths of Functional Classes in L2. J. Inf. Secur. Appl. 1-7

Publication Dates

Received date: July 12, 2023
Accepted date: June 12, 2023
Published date: July 15, 2023

Abstract

In this paper, we consider the problem of finding exact inequalities of Jackson-Stechkin type that are obtained for the average moduli of continuity of mth order $(\mathrm{m} \in \mathrm{N})$, with general weight function in L2 and also present applications. The exact values of these n-widths are calculated.

Keywords: The Space of Lebesgue; Trigonometric Polynomials; Weight Function; The Best of Approximation; Inequality; N -Widths

Introduction

Let $L_{2}:=\mathrm{L} 2[0,2 \pi]$ denote the space of Lebesgue measurable 2π-periodic real functions f with norm

$$
\|f\|_{2}:=\|f\|_{L_{2}}=\left(\frac{1}{\pi} \int_{0}^{2 \pi}|f(x)|^{2} d x\right)^{1 / 2}<\infty
$$

Let $\mathfrak{I n}-1$ be the subspace of all trigonometric polynomials of degree $\leq n-1$. It is well known that, for any function $f \in L_{2}$ with Fourier expansion

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

the value of its best approximation in L2 by elements of the subspace $\mathfrak{I} n-1$ is

$$
\begin{align*}
& E_{n}(f):=\inf \left\{\left\|f-T_{n-1}\right\|_{2}: T_{n-1}(x) \in \Im_{n-1}\right\} \\
&=\left\|f-S_{n-1}(f)\right\|_{2}=\left\{\sum_{k=n}^{\infty} \rho_{k}^{2}\right\}^{1 / 2} \tag{1.1}
\end{align*}
$$

where,

$$
S_{n-1}(f ; x)=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

is the partial sum of order $n-1$ of the Fourier series for the function f and $\rho_{k}^{2}:=a_{k}^{2}+b_{k}^{2}$.

Let $\Delta^{m}{ }_{h}(f) 2$ denote the norm of the mth-order difference of a function $f \in L_{2}$ with step h, that is,
$\triangle_{h}^{m}(f)_{2}:=\left\|\triangle_{h}^{m}(f)\right\|_{2}=\left\{\frac{1}{\pi} \int_{0}^{2 \pi}\left|\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} f(x+k h)\right|^{2} d x\right\}^{1 / 2}$

Then

$$
\omega_{m}(f ; t):=\sup \left\{\triangle_{m}(f ; h):|h| \leq t\right\}
$$

defines the mth-order modulus of continuity of a function $f \in L_{2}$. By $L_{2}{ }^{(r)}\left(r \in \mathbb{N} ; L^{(0)}{ }_{2}=L_{2}\right)$ we denote the set of functions $f \in L_{2}$, whose $(r-1)$ st derivatives are absolutely continuous and $f^{(r)} \in$ L_{2}. In Section 3, in defining classes of functions, we characterize the structural properties of a function $f \in L^{(r)}$ by the rate of
convergence to zero of the modulus of continuity of its rth derivative $\mathrm{f}^{(\mathrm{rr})}$, defining this rate in terms of the majorant of some averaged quantity $\omega_{\mathrm{m}}\left(\mathrm{f}^{(\mathrm{r})} ; \mathrm{t}\right)$.

Related Extremal Problems

Extremal problems in the theory of approximation of differentiable periodic functions by trigonometric polynomials in the L_{2} space involve the determination of sharp constants in inequalities of Jackson-Stechkin type

$$
E_{n}(f) \leq \chi n^{-r} \omega_{m}\left(f^{(r)}, t / n\right), \quad t>0
$$

To this end, different extremal characteristics refining upper bounds for the constants χ were studied (see, for example, [1-8]). Chernykh [1, pp.515-516] in studying the question of best approximation of differentiable periodic functions by trigonometric polynomials in L_{2}, showed that the functional

$$
\Phi_{n}(f):=\left\{(n / 2) \int_{0}^{\pi / n} \omega_{m}^{2}(f, t) \sin n t d t\right\}^{1 / \hbar}
$$

is smaller than the Jackson functional $\omega_{\mathrm{m}}(\mathrm{f}, \pi / \mathrm{n})$ and, is apparently more natural for characterizing best approximations $E_{n-1}(f)$ of periodic functions in L_{2}.

Given these considerations Ligun [2] studied extremal characteristics of the form (in what follows the ratio $0 / 0$ is set equal to zero):

$$
\mathcal{K}_{m, n, r}(\varphi, h):=\sup \left\{\frac{E_{n-1}^{2}(f)}{\int_{0}^{h} \omega_{m}^{2}\left(f^{(r)}, t\right) \varphi(t) d t}: f \in L_{2}^{(r)}, f^{(r)} \neq \text { const }\right\} \text {, }
$$

where $m, n \in N ; r \in Z+; 0<h 6 \pi / n ; \varphi(t)>0$ is integrable on the segment $[0, h]$. He showed that

$$
\begin{aligned}
& \qquad\left\{B_{n, h}^{r, m}(\varphi)\right\}^{-1} \leqslant \mathcal{K}_{m, n, r}(\varphi, h) \leqslant\left\{\inf _{n \leqslant k<\infty} B_{k, h}^{r, m}(\varphi)\right\}^{-1}, \\
& \text { where } \\
& B_{k, h}^{r, m}(\varphi):=2^{m} k^{2 r} \int_{0}^{h}(1-\cos k t)^{m} \varphi(t) d t, k \geqslant n .
\end{aligned}
$$

In order to generalize the results of [2], using the scheme of reasoning in Pinkus [3, pp.104-107], Shabozov and Yusupov [4] introduced the extremal characteristic
$\chi_{m, n, r, p}(\varphi, h)$

$$
\begin{equation*}
:=\sup \left\{\frac{E_{n-1}(f)}{\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)}, t\right) \varphi(t) d t\right)^{1 / p}}: f \in L_{2}^{(r)}, f^{(r)} \neq \text { const }\right\}, \tag{2.1}
\end{equation*}
$$

where $\mathrm{m}, \mathrm{n} \in \mathrm{N} ; \mathrm{r} \in \mathrm{Z}+; 0<\mathrm{h} 6 \pi / \mathrm{n} ; \varphi(\mathrm{t})>0$ is integrable on the segment $[0, \mathrm{~h}]$, and for $0<\mathrm{p} 62$ proved the inequality

$$
\begin{equation*}
\left\{\mathcal{A}_{n, h, p, p}^{r, m}(\varphi)\right\}^{-1} \leqslant \chi_{m, n, r, p, p}(\varphi, h) \leqslant\left\{\inf _{n \leqslant k<\infty} \mathcal{A}_{k, h, p}^{r, m}(\varphi)\right\}^{-1} \tag{2.2}
\end{equation*}
$$

where

$$
\mathcal{A}_{k, h, p}^{r, m}(\varphi):=2^{m / 2}\left(k^{r p} \int_{0}^{h}(1-\cos k t)^{m p / 2} \varphi(t) d t\right)^{1 / p}, k \geqslant n .
$$

In the calculation of the exact values of the n-widths of classes of functions directly from (2.1), and in connection with the accuracy of (2.2) there is a need to establish the equality

$$
\begin{equation*}
\inf _{n \leq k<\infty} \mathcal{A}_{k, h, p}^{r, m}(\varphi)=\mathcal{A}_{n, h, p}^{r, m}(\varphi) \tag{2.3}
\end{equation*}
$$

for any positive integrable functions φ on the segment $[0, h]$. In general, the verification of (2.3) is not always possible. For some specific weight functions φ, condition (2.3) is proved in [5]. Obviously, equation (2.3) depends on the structural properties of the weight function φ. A natural question arises: what structural and differential properties must a function φ have in order to satisfy (2.3)? The answer to the question is contained in the following statement.

Theorem 2.1. Suppose that the weight function $\varphi(t)$ defined on $[0, h]$ is non-negative and continuously differentiable thereon. If, for $r \in \mathbb{N}, 1 / r<p \leq 2$ and every $t \in[0, h]$ we have
$(\mathrm{rp}-1) \varphi(\mathrm{t})-\mathrm{t} \varphi^{\prime}(\mathrm{t}) \geq 0$,
then, for any $\mathrm{m}, \mathrm{n} \in \mathbb{N}$ and $0<\mathrm{h} \leq \pi / \mathrm{n}$ we have the equality

$$
\begin{equation*}
\chi_{m, n, r, p}(\varphi ; h)=2^{-m} n^{-r}\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{-1 / p} . \tag{2.5}
\end{equation*}
$$

There is a function $\mathrm{f}_{0} \in \mathrm{~L}\left({ }^{(\mathrm{r})}{ }_{2}, \mathrm{f}^{\mathrm{r})}{ }_{0} \neq\right.$ const, realizing the upper bound in (2.1) equal to (2.5).

Proof. We use the following simplified version of Minkowski's inequality [3, p.104]

$$
\begin{gathered}
\left(\int_{0}^{h}\left(\sum_{k=n}^{\infty}\left|f_{k}(t)\right|^{2}\right)^{p / 2} \varphi(t) d t\right)^{1 / p} \geq\left(\sum_{k=n}^{\infty}\left(\int_{0}^{h}\left|f_{k}(t)\right|^{p} \varphi(t) d t\right)^{2 / p}\right)^{1 / 2}, \\
(0<p \leq 2 ; \varphi(t) \geq 0,0<t \leq h) .
\end{gathered}
$$

Indeed, bearing in mind that for any function $f \in L^{(r)}$ we have the relation [10]

$$
\begin{align*}
& \omega_{m}^{2}\left(f^{(r)} ; t\right)=2^{m} \sup \left\{\sum_{k=1}^{\infty} k^{2 r} \rho_{k}^{2}(1-\cos k u)^{m}:|u| \leq t\right\} \\
& \text { then } \\
& \qquad \begin{aligned}
&\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p} \\
& \geq\left\{\int_{0}^{h}\left[2^{m} \sum_{k=n}^{\infty} k^{2 r} \rho_{k}^{2}(1-\cos k t)^{m}\right]^{p / 2} \varphi(t) d t\right\}^{1 / p} \\
&=\left\{\int_{0}^{h}\left(2^{m} \sum_{k=n}^{\infty} k^{2 r} \rho_{k}^{2}(1-\cos k t)^{m}[\varphi(t)]^{2 / p}\right)^{p / 2} d t\right\}^{1 / p} \\
& \geq\left\{2^{m} \sum_{k=n}^{\infty} \rho_{k}^{2}\left(k^{r p} \int_{0}^{h}(1-\cos k t)^{m p / 2} \varphi(t) d t\right)^{2 / p}\right\}^{1 / 2}
\end{aligned}
\end{align*}
$$

We prove that under our assumptions

$$
\begin{equation*}
y(x)=x^{r p} \int_{0}^{h}(1-\cos x t)^{m p / 2} \varphi(t) d t \tag{2.7}
\end{equation*}
$$

is a strictly increasing function in the domain $Q=\{x: x \geq 0\}$ and, hence,

$$
\begin{equation*}
\min \{y(x): x \in Q\}=y(n):=n^{r p} \int_{0}^{h}(1-\cos n t)^{m p / 2} \varphi(t) d t \tag{2.8}
\end{equation*}
$$

Indeed, differentiating (2.7) and using the elementary identity

$$
\frac{u}{d x}(1-\cos x t)^{m p / 2}=-\frac{l}{x} \cdot \frac{u}{d t}(1-\cos x t)^{m p / 2},
$$

we have

$$
\begin{aligned}
& y^{\prime}(x)=r p x^{r p-1} \int_{0}^{h}(1-\cos x t)^{m / / 2} \varphi(t) d t+x^{r p} \int_{0}^{h} \frac{d}{d x}(1-\cos x t)^{m p / 2} \varphi(t) d t \\
& =r p x^{r p-1} \int_{0}^{h}(1-\cos x t)^{m p / 2} \varphi(t) d t+x^{r p-1} \int_{0}^{h} \frac{d}{d t}(1-\cos x t)^{m / / 2} 2 \varphi(t) d t .(2.9)
\end{aligned}
$$

Integrating by parts in the last integral of (2.9), the inequality (2.4), we finally obtain

$$
\begin{aligned}
& y^{\prime}(x)=x^{r p-1}\left\{(1-\cos h x)^{m p / 2} h \varphi(h)\right. \\
& \left.+\int_{0}^{h}(1-\cos x t)^{m p / 2}\left[(r p-1) \varphi(t)-t \varphi^{\prime}(t)\right] d t\right\} \geq 0
\end{aligned}
$$

which implies the relation (2.8).
Therefore continuing inequality (2.6), we have

$$
\begin{align*}
\cdots \geq 2^{m / 2} n^{r} & \left(\int_{0}^{n}(1-\cos n t)^{m p / 2} \varphi(t) d t\right)^{1 / p}\left\{\sum_{k=n}^{\infty} \rho_{k}^{2}\right\}^{1 / 2} \\
& =2^{m} n^{r} E_{n-1}(f)\left(\int_{0}^{n}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{1 / p} . \tag{2.10}
\end{align*}
$$

From (2.6) and (2.10) it follows that

$$
\frac{E_{n-1}(f)}{\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p}} \leq 2^{-m} n^{-r}\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{-1 / p} .
$$

Since the last inequality holds for any $f \in L(r) 2$ we have an upper bound for (2.5):

$$
\begin{equation*}
\chi_{m, n, r, p}(\varphi ; h) \leq 2^{-m} n^{-r}\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{-1 / p} . \tag{2.11}
\end{equation*}
$$

The lower bound in (2.5), valid for all $0<\mathrm{h} \leq \pi / \mathrm{n}$, is obtained by using the function $f_{0}(x)=\cos n x \in L^{(r)}$. We have

$$
E_{n-1}\left(f_{0}\right)=1, \quad \omega_{m}\left(f_{0}^{(r)} ; t\right)=2^{m} n^{r}\left(\sin \frac{n t}{2}\right)^{m}, \quad 0<n t \leq \pi
$$

Thus

$$
\begin{align*}
\chi_{m, n, r, p}(\varphi ; h) & \geq \frac{E_{n-1}\left(f_{0}\right)}{\left(\int_{0}^{h} \omega_{m}^{p}\left(f_{0}^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p}} \\
& =2^{-m} n^{-r}\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{-1 / p} . \tag{2.13}
\end{align*}
$$

Equation (2.5) is a consequence of (2.11) and (2.12). This completes the proof of Theorem 2.1.

As a particular case of Theorem 2.1 we have:

Corollary 2.1. Let $\varphi(t)=\sin ^{\prime}\left(\frac{p t}{h}\right), 0<\beta \leq \pi, 0 \leq t \leq h, 0<h \leq$ $\pi / n, 0 \leq \gamma \leq r p-1,1 / r<p \leq 2, r \in \mathbb{N}$. Then for any $m, n \in \mathbb{N}$ we have

$$
\begin{align*}
& \chi_{m, n, r p}\left(\sin ^{n}\left(\frac{\beta t}{h}\right) ; h\right) \\
& =2^{-m} n^{-r}\left(\int_{0}^{h}\left(\sin \left(\frac{n t}{2}\right)\right)^{m p} \sin ^{\prime}\left(\frac{\beta t}{h}\right) d t\right\}^{-1 / p} . \tag{2.13}
\end{align*}
$$

Proof. The parameter values $\mathrm{p}, \mathrm{r}, \beta, \gamma, \mathrm{h}$ as in the statement of Corollary 2.1 suffice to verify (2.4). We have

$$
\begin{aligned}
& (r p-1) \varphi(t)-t \varphi^{\prime}(t)=(r p-1) \sin ^{\gamma}\left(\frac{\beta t}{h}\right)-t \gamma \frac{\beta}{h} \sin ^{\gamma-1}\left(\frac{\beta t}{h}\right) \cos \frac{\beta t}{h} \\
& =\left[(r p-1)-\gamma \frac{\beta t}{h} \operatorname{ctg} \frac{\beta t}{h}\right] \sin ^{\prime}\left(\frac{\beta t}{h}\right) \geq[(r p-1)-\gamma] \sin \gamma\left(\frac{\beta t}{h}\right) \geq 0,
\end{aligned}
$$

because for the values of the above parameters

$$
\min \left\{\left[(r p-1)-\gamma \cdot \frac{\beta t}{h} \operatorname{ctg} \frac{\beta t}{h}\right]: t \in[0, h]\right\}=(r p-1)-\gamma \geq 0
$$

This proves Corollary 2.1.
Corollary 2.1 contains, in particular, the results of [4-8] for different parameters p, γ, β and h.

The Statement of the Main Results

We recall the necessary concepts and definitions which will be used later. Suppose that $S=\{\mathrm{v}:\|\mathrm{v}\| \leq 1\}$ is the unit ball in L_{2}; \mathfrak{M} is a convex centrally symmetric subset from $L_{2} ; \Lambda_{N} \subset L_{2}$ is an N -dimensional subspace; $\Lambda^{\mathrm{N}} \subset \mathrm{L}_{2}$ is a subspace of codimension $\mathrm{N} ; \mathrm{L}: \mathrm{L}_{2} \rightarrow \Lambda_{\mathrm{N}}$ is a continuous linear operator taking elements of the space L_{2} to $\Lambda_{\mathrm{N}} ;$ and $\mathrm{L}^{\perp}: \mathrm{L}_{2} \rightarrow \Lambda_{\mathrm{N}}$ is a continuous linear projection operator from L_{2} onto Λ_{N}. The quantities

$$
b_{N}\left(\mathfrak{M}, L_{2}\right)=\sup \left\{\sup \left\{\varepsilon>0 ; \varepsilon S \cap L_{N+1} \subset \mathfrak{M}\right\}: \Lambda_{N+1} \subset L_{2}\right\},
$$

```
d}\mp@subsup{d}{}{N}(\mathfrak{M},\mp@subsup{L}{2}{})=\operatorname{inf}{\operatorname{sup}{|f\mp@subsup{|}{2}{2}:f\in\mathfrak{M}\cap\mp@subsup{\Lambda}{}{N}}:\mp@subsup{\Lambda}{}{N}\subset\mp@subsup{L}{2}{}}
dN}(\mathfrak{M},\mp@subsup{L}{2}{})=\operatorname{inf}{\operatorname{sup}{\operatorname{inf}{|f-g\mp@subsup{|}{2}{}:g\in\mp@subsup{\Lambda}{N}{}}:f\in\mathfrak{M}}:\mp@subsup{\Lambda}{N}{}\subset\mp@subsup{L}{2}{}}
\lambdaN(\mathfrak{M},\mp@subsup{L}{2}{})=\operatorname{inf}{\operatorname{inf}{\operatorname{sup}{|f-\mathcal{L}f\mp@subsup{|}{2}{}:f\in\mathfrak{M}}:\mathcal{L}\mp@subsup{L}{2}{}\subset\mp@subsup{\Lambda}{N}{}}:\mp@subsup{\Lambda}{N}{}\subset\mp@subsup{L}{2}{}},
\pi
```

are called, respectively, the Bernstein, Gelfand, Kolmogorov, linear, and projection N -widths in the space L_{2}. Since L_{2} is a Hilbert space, the N -widths listed above are related by (see, e.g., [3]):

$$
\begin{equation*}
b_{N}\left(\mathfrak{M} ; L_{2}\right) \leq d^{N}\left(\mathfrak{M} ; L_{2}\right) \leq d_{N}\left(\mathfrak{M} ; L_{2}\right)=\lambda_{N}\left(\mathfrak{M} ; L_{2}\right)=\pi_{N}\left(\mathfrak{M} ; L_{2}\right) \tag{3.1}
\end{equation*}
$$

We shall denote by $\mathrm{W}_{\mathrm{m}}\left(\mathrm{f}^{(\mathrm{r})} ; \varphi\right) \mathrm{p}, \mathrm{h}, \mathrm{m} \in \mathbb{N}, \mathrm{r} \in \mathbb{N} \cup\{0\}, 0<\mathrm{p} \leq$ $2,0<h \leq \pi$, the pth mean value of the modulus of continuity of mth order of functions $\mathrm{f}^{(\mathrm{r})}$ with weight $\varphi(\mathrm{t})$:

$$
\begin{equation*}
W_{m}\left(f^{(r)} ; \varphi\right)_{p, h}=\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p}\left(\int_{0}^{h} \varphi(t) d t\right)^{-1 / p} \tag{3.2}
\end{equation*}
$$

and, by $L^{(r)}{ }_{2}(\mathrm{~m}, \mathrm{p}, \mathrm{h} ; \varphi)$ we designate the set of functions $\mathrm{f} \in \mathrm{L}^{(\mathrm{r})}{ }_{2}$ for which $\mathrm{W}_{\mathrm{m}}\left(\mathrm{f}^{\mathrm{f})} ; \varphi\right) \mathrm{p}, \mathrm{h} \leq 1$.

Obviously, because of the monotonicity of the modulus of continuity of mth order $\omega_{\mathrm{m}}\left(\mathrm{f}^{(r)} ; \mathrm{t}\right)$ for an arbitrary integrable weight function $\varphi(\mathrm{t}) \geq 0(0<\mathrm{t} \leq \mathrm{h})$ from (3.2) it follows that
$\mathrm{C}(\mathrm{m}, \mathrm{r}, \mathrm{p}, \mathrm{h}) \omega_{\mathrm{m}}\left(\mathrm{f}^{\mathrm{fr})} ; \mathrm{h}\right) \leq \mathrm{Wm}\left(\mathrm{f}^{\mathrm{fr})} ; \varphi\right) \mathrm{p}, \mathrm{h} \leq \omega\left(\mathrm{f}^{\mathrm{fr})} ; \mathrm{h}\right)$,
where $C(m, r, p, h)$ is a positive constant that depends on the values of the parameters in parentheses. With this notation, the search for the smallest constant in the Jackson-Stechkin inequality is equivalent to the problem of computing the exact upper bound

$$
\begin{equation*}
\mathbb{K}_{m, p, h}\left(L_{2}^{(r)}, L_{2}, \Im_{N}\right)=\sup \left\{\frac{E\left(f, \Im_{N}\right)_{2}}{W_{m}\left(f^{(r)} ; \varphi\right)_{p, h}}: f \in L_{2}^{(r)}\right\} \tag{3.3}
\end{equation*}
$$

Here we will look for the lowest constant relative to the entire set of the spaces $\mathfrak{I} N \subset L_{2}$ of fixed dimension N. This will show that the result can not be improved upon by switching to another subspace of the same dimension

$$
\begin{aligned}
& \mathbb{K}_{N, m, p, h}\left(L_{2}^{(r)}, L_{2}\right)=\inf \left\{\mathbb{K}_{m, p, h}\left(L_{2}^{(r)}, L_{2}, \Im_{N}\right): \Im_{N} \subset L_{2}\right\} \\
& =\inf \left\{\sup \left\{\frac{E\left(f, \Im_{N}\right)_{2}}{W_{m}\left(f^{(r)} ; \varphi\right)_{p, h}}: f \in L_{2}^{(r)}\right\}: \Im_{N} \subset L_{2}\right\} .
\end{aligned}
$$

We also put

$$
E_{n-1}\left(L_{2}^{(r)}(m, p, h ; \varphi)\right)_{2}=\sup \left\{\left\|f-S_{n-1}(f)\right\|_{2}: f \in L_{2}^{(r)}(m, p, h ; \varphi)\right\}
$$

Proposition 3.1. Suppose that $h, p>0, r \in \mathbb{Z}_{+,} m, n \in \mathbb{N}$. Then the following inequality holds

$$
\mathrm{K}_{\mathrm{N}^{\prime} \mathrm{m}^{\prime} \mathrm{p}^{\prime} \mathrm{h}}\left(\mathrm{~L}_{2}^{(r)}, \mathrm{L}_{2}\right)=\mathrm{d}_{\mathrm{N}}\left(\mathrm{~L}_{2}{ }^{(\mathrm{r})}(\mathrm{m}, \mathrm{p}, \mathrm{~h} ; \varphi), \mathrm{L}_{2}\right) .
$$

Proof. If $f \in L^{(r)}{ }_{2}, \varphi(\mathrm{t}) \geq 0$ is integrable on the segment $[0, \mathrm{~h}]$ and, $\mathrm{W}_{\mathrm{m}}\left(\mathrm{f}^{(\mathrm{r}}, \varphi\right) \mathrm{p}, \mathrm{h}=\alpha>0$ then for $\mathrm{fl}(\mathrm{x})=\alpha^{-1} \mathrm{f}(\mathrm{x})$, we have $\mathrm{Wm}\left(\mathrm{f}^{(\mathrm{rr})}, \varphi\right) \mathrm{p}, \mathrm{h}=1$. Given the positive homogeneous functional $\mathrm{E}(\mathrm{f}, \mathfrak{I} \mathrm{N}) 2$ and $\mathrm{W}_{\mathrm{m}}\left(\mathrm{f}^{(\mathrm{r})}, \varphi\right) \mathrm{p}, \mathrm{h}$, for any $0<\mathrm{p} \leq 2$ and a fixed $h>0$ we have

$$
\begin{equation*}
\sup _{f \in L_{2}^{(r)}} \frac{E\left(f, \Im_{N}\right)_{2}}{W_{m}\left(f^{(r)} ; \varphi\right)_{p, h}} \leq \sup _{f \in L_{2}^{(r)}(m, p, h ; \varphi)} E\left(f, \Im_{N}\right)_{2} \tag{3.4}
\end{equation*}
$$

Through (3.4) the lower bound over all subspaces $\mathfrak{I N} \subset \mathrm{L}_{2}$ dimension N we obtain

$$
K_{N^{\prime} m^{\prime} p^{\prime} \mathrm{h}}\left(L_{2}^{(r)}, L_{2}\right)=d_{N}\left(L_{2}^{(r)}(m, p, h ; \varphi), L_{2}\right) .
$$

On the other hand, for any function $f \in L^{(r)}(m, p, h ; \varphi)$ by definition of the class $\mathrm{L}^{(\mathrm{r})}(\mathrm{m}, \mathrm{p}, \mathrm{h} ; \varphi)$ have an inequality of the form

$$
E\left(f, \Im_{N}\right)_{2} \leq \frac{E\left(f, \Im_{N}\right)_{2}}{W_{m}\left(f^{(r)} ; \varphi\right)_{p, h}}
$$

and as this is true for every subspace $\mathfrak{J} \mathrm{N} \subset \mathrm{L}_{2}$ then
$d_{\mathrm{N}}\left(\mathrm{L}_{2}{ }^{(r)}(m, p, h ; \varphi), \mathrm{L}_{2}\right) \leq \mathrm{K}_{N^{\prime} m, p, h}\left(\left(\mathrm{~L}_{2}{ }^{(r)},\left(\mathrm{L}_{2}\right)\right.\right.$.
Proposition 3.1 follows from (3.5) and (3.6).
Theorem 3.1. Suppose that the weight function $\varphi(\mathrm{t})$ defined on the segment $[0, h]$ is non-negative and continuously differentiable thereon. If for some $r \in \mathbb{N}, 1 / r<p \leq 2$, and any $t \in[0, h]$, we have
$(\mathrm{rp}-1) \varphi(\mathrm{t})-\mathrm{t} \varphi^{\prime}(\mathrm{t}) \geq 0, \ldots(3.7)$
then, for any $\mathrm{m}, \mathrm{n} \in \mathbb{N}$ and $0<\mathrm{h} \leq \pi / \mathrm{n}$
$\mathrm{K}_{2 n^{\prime} m, p, h}\left(\mathrm{~L}_{2}^{(r)}, \mathrm{L}_{2}\right)=\mathrm{K}_{2 n-1, m, p, h}\left(\mathrm{~L}_{2}{ }^{(r)}, \mathrm{L}_{2}\right)=E_{n-1}\left(\mathrm{~L}_{2}{ }^{(r)}(m, p, h ; \varphi)_{2}\right.$
where $\delta_{\mathrm{k}}(\cdot)$ are any of the k -widths: Bernstein $\mathrm{b}_{\mathrm{k}}(\cdot)$, Kolmogorov $d_{k}(\cdot)$, linear $\lambda_{k}(\cdot)$, Gelfand $d_{k}(\cdot)$ or projection $\pi_{k}(\cdot)$. All k-widths are attained by taking the partial sums of the Fourier series
$S_{k-1}(f ; t)$.
Proof. From (2.10) and since (3.7) holds, it follows that

$$
\begin{aligned}
& E_{n-1}(f) \leq 2^{-m} n^{-r} \frac{\left(\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p}}{\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{1 / p}} \\
& =2^{-m} n^{-r}\left(\frac{\left.\int_{0}^{h} \omega_{m}^{p}\left(f^{(r)} ; t\right) \varphi(t) d t\right)^{1 / p}}{\int_{0}^{h} \varphi(t) d t} \cdot\left(\frac{\int_{0}^{h} \varphi(t) d t}{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t}\right)^{1 / p} .\right.
\end{aligned}
$$

Hence, for the width of the projection of class $\mathrm{L}_{2}^{(r)}(\mathrm{m}, \mathrm{p}, \mathrm{h} ; \varphi)$, we obtain an upper bound

$$
\begin{gathered}
\pi_{2 n}\left(L_{2}^{(r)}(m, p, h ; \varphi), L_{2}\right) \leq \pi_{2 n-1}\left(L_{2}^{(r)}(m, p, h ; \varphi), L_{2}\right) \leq E_{n-1}\left(L_{2}^{(r)}(m, p, h ; \varphi)\right)_{2} \\
=2^{-m} n^{-r}\left\{\int_{0}^{h} \varphi(t) d t\right\}^{1 / p}\left\{\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right\}^{-1 / p}
\end{gathered}
$$

In order to obtain a lower bound for the Bernstein n-width of $\mathrm{L}^{(\mathrm{r})}{ }_{2}(\mathrm{~m}, \mathrm{p}, \mathrm{h} ; \varphi)$ we consider the ball

$$
\mathbb{B}_{2 n+1}=\left\{T_{n} \in \Im_{2 n+1}:\left\|T_{n}\right\|_{2} \leq \frac{2^{-m} n^{-r}\left(\int_{0}^{h} \varphi(t) d t\right)^{1 / p}}{\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{1 / p}}\right\}
$$

in the $(2 \mathrm{n}+1)$-dimensional subspace $\mathfrak{J} 2_{\mathrm{n}+1}$ of trigonometric polynomials and show that $\mathbb{B}_{2 \mathrm{n}+1} \subset \mathrm{~L}^{(\mathrm{r})}{ }_{2}(\mathrm{~m}, \mathrm{p}, \mathrm{h} ; \varphi)$. In [7] it is proved that for an arbitrary polynomial $\operatorname{Tn} \in \mathfrak{I}_{2 \mathrm{n}+1}$ for $0<\mathrm{h} \leq$ π / n, the inequality

$$
\begin{equation*}
\omega_{m}\left(T_{n}^{(r)}, t\right) \leq 2^{m} n^{r}\left(\sin \frac{n t}{2}\right)^{m e}\left\|T_{n}\right\|_{2} \tag{3.9}
\end{equation*}
$$

Elevate both sides of (3.9) to the to the power p, multiply by φ and integrate the result over t in the range from 0 to h. Whence we obtain directly

$$
\left(\frac{\left.\int_{0}^{h} \omega_{m}^{p}\left(T_{n}^{(r)} ; t\right) \varphi(t) d t\right)^{h} \int_{0}^{h} \varphi(t) d t}{\int_{0}^{m}} \leq 2^{m} n^{r}\left(\frac{\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right)^{1 / p}}{\int_{0}^{h} \varphi(t) d t} \cdot\left\|T_{n}\right\|_{2} \leq 1\right.\right.
$$

from which $\mathbb{B}_{2 n+1} \subset \mathrm{~L}^{(\mathrm{r})}{ }_{2}(\mathrm{~m}, \mathrm{p}, \mathrm{h} ; \varphi)$. By the definition of the Bernstein n-width we obtain the lower bound

$$
\begin{align*}
b_{2 n-1}\left(L_{2}^{(r)}(m, p, h ; \varphi), L_{2}\right) & \geq b_{2 n}\left(L_{2}^{(r)}(m, p, h ; \varphi), L_{2}\right) \geq b_{2 n}\left(\mathbb{B}_{2 n+1}, L_{2}\right) \\
& =2^{-m} n^{-r}\left\{\int_{0}^{h} \varphi(t) d t\right\}^{1 / p}\left\{\left(\left(\sin \frac{n t}{2}\right)^{m p} \varphi(t) d t\right\}_{0}^{h}\right\}^{-1 / p} \tag{3.10}
\end{align*}
$$

This completes the proof of Theorem 3.1.
As a particular case of Theorem 3.1 we have a result found in [5]. Namely,

Corollary 3.1. Let Let $\varphi_{*}(t)=\sin ^{\gamma} \frac{\beta}{h} t ; 0 \leq \gamma \leq r p-1, r \geq 1,1 / r<p \leq 2$.
Then the following inequality holds

$$
\begin{aligned}
\mathbb{K}_{2 n, m, p, h}\left(L_{2}^{(r)}, L_{2}\right) & =\mathbb{K}_{2 n-1, m, p, h}\left(L_{2}^{(r)}, L_{2}\right) \\
& =\delta_{2 n}\left(L_{2}^{(r)}\left(p, h, m ; \varphi_{*}\right), L_{2}\right)=\delta_{2 n-1}\left(L_{2}^{(r)}\left(p, h, m ; \varphi_{*}\right), L_{2}\right) \\
& =2^{-m} n^{-r}\left(\int_{0}^{h} \sin ^{\gamma} \frac{\beta}{h} t d t\right)^{1 / p}\left(\int_{0}^{h}\left(\sin \frac{n t}{2}\right)^{m p} \sin ^{\gamma} \frac{\beta}{h} t d t\right)^{-1 / p},
\end{aligned}
$$

where $\delta_{\mathrm{k}}(\cdot)$ are any of the above-listed k -widths

References

1. Chernykh NI (1967) On the best L2-approximation of periodic function by trigonometric polynomials. Mat. Zametki 2: 513-22 (in Russian).
2. Ligun AA (1978) Exact inequalities of jackson type for periodic functions in space L2, Mat. Zametki 24: 785-92 (in Russian).
3. Pinkus A (1985) n-Widths in Approximation Theory, SpringerVerlag, Berlin, Heidelberg, New York, Tokyo.
4. Shabozov MSh, Yusupov GA (2011) Best Polynomial Approximations in L_{2} of Classes of 2π-Periodic Functions and Exact Values of Their Widths, Mat. Zametki 90: 764-75 (in Russian).
5. Shabozov MSh, Yusupov GA (2012) Widths of Certain Classes of Periodic Functions in L2, Journal of Approximation Theory 164: 869-78.
6. Taikov LV (1979) Structural and constructive characteristics of function from L2, Mat. Zametki 25: 217-23 (in Russian).
7. Yusupov GA (2013) Best polynomial approximations and widths of certain classes of functions in the space L2, Eurasian Math. J 4: 120-6.
8. Yusupov GA (2014) Jackson's - Stechkin's inequality and the values of widths for some classes of functions from L2, Analysis Mathematica 40: 69-81.
